Abstract

Root secretion of coumarin-phenolic type compounds has been recently shown to be related to Arabidopsis thaliana tolerance to Fe deficiency at high pH. Previous studies revealed the identity of a few simple coumarins occurring in roots and exudates of Fe-deficient A. thaliana plants, and left open the possible existence of other unknown phenolics. We used HPLC-UV/VIS/ESI-MS(TOF), HPLC/ESI-MS(ion trap) and HPLC/ESI-MS(Q-TOF) to characterize (identify and quantify) phenolic-type compounds accumulated in roots or secreted into the nutrient solution of A. thaliana plants in response to Fe deficiency. Plants grown with or without Fe and using nutrient solutions buffered at pH 5.5 or 7.5 enabled to identify an array of phenolics. These include several coumarinolignans not previously reported in A. thaliana (cleomiscosins A, B, C, and D and the 5′-hydroxycleomiscosins A and/or B), as well as some coumarin precursors (ferulic acid and coniferyl and sinapyl aldehydes), and previously reported cathecol (fraxetin) and non-cathecol coumarins (scopoletin, isofraxidin and fraxinol), some of them in hexoside forms not previously characterized. The production and secretion of phenolics were more intense when the plant accessibility to Fe was diminished and the plant Fe status deteriorated, as it occurs when plants are grown in the absence of Fe at pH 7.5. Aglycones and hexosides of the four coumarins were abundant in roots, whereas only the aglycone forms could be quantified in the nutrient solution. A comprehensive quantification of coumarins, first carried out in this study, revealed that the catechol coumarin fraxetin was predominant in exudates (but not in roots) of Fe-deficient A. thaliana plants grown at pH 7.5. Also, fraxetin was able to mobilize efficiently Fe from a Fe(III)-oxide at pH 5.5 and pH 7.5. On the other hand, non-catechol coumarins were much less efficient in mobilizing Fe and were present in much lower concentrations, making unlikely that they could play a role in Fe mobilization. The structural features of the array of coumarin type-compounds produced suggest some can mobilize Fe from the soil and others can be more efficient as allelochemicals.

Highlights

  • Iron (Fe) is required for many crucial biological processes, and is essential for all living organisms

  • Phenolics found in this study include several coumarinolignans not previously reported in A. thaliana, as well as other previously reported coumarins and some coumarin precursors

  • We report here for the first time on the quantification of all identified coumarins, revealing that Fe deficiency mainly induced the root accumulation and exudation of the non-catechol coumarin scopoletin and the catechol coumarin fraxetin, with the exudation of fraxetin being more prominent when Fe chlorosis was intense

Read more

Summary

Introduction

Iron (Fe) is required for many crucial biological processes, and is essential for all living organisms. Since plants and microbiota have evolved in soils poor in available Fe, they have active mechanisms for Fe acquisition, often relying on the synthesis and secretion of an array of chemicals that modify the neighboring environment and reduce competition for Fe (Crumbliss and Harrington, 2009; Jin et al, 2014; Mimmo et al, 2014; Aznar et al, 2015) Some of these chemicals are capable to mine Fe from the soil via solubilization, chelation and reduction processes, whereas others can serve as repellants and/or attractants that inhibit or promote the growth of concomitant organisms

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call