Abstract
AimThe peripheral tumor growth is accompanied by the accumulation of inflammatory mediators in the blood that can negatively influence blood-brain barrier function and neuronal structure and develop the cancer-associated depression. The aim of the study was to evaluate the neurobiological effects of lithium on hepatocellular carcinoma mice model. MethodsIn this study we analyzed the locomotor activity of lithium-treated tumor-bearing mice using the Phenomaster instrument. Inductively coupled plasma mass-spectral analysis was used to determine lithium levels in blood, brain, liver, kidneys, tumors and muscle tissues. The prefrontal cortex neurons ultrastructure was assessed by transmission electron microscopy. Expression of BDNF, GRP78, EEA1, LAMP1, and LC3 beta in neurons was determined by immunohistochemical analysis. ResultsA decrease in locomotor activity was found in animals with tumors. At the same time, the low expression levels of the neurotrophic factor BDNF and early endosomal marker EEA1 were revealed, as well as the decreased amount of synaptic vesicles and synapses was shown. Signs of endoplasmic reticulum stress and autophagy development in neurons of animals with tumors were noted. Lithium carbonate administration had a corrective effect on animal’s behavior and the prefrontal cortex neurons structure. ConclusionsIn summary, lithium can restore the neuronal homeostasis in tumor-bearing mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.