Abstract

It is shown that when a MOS (metal–oxide–semiconductor) structure is simultaneously exposed to radiation and high-field injection of electrons, part of the radiation-induced positive charge can be erased when interacting with injected electrons, and the density of surface states can increase. These phenomena must be taken into account when operating MOS radiation sensors in high-field charge injection modes. High-field injection modes used for post-radiation erase of positive charge in MOS sensors are analyzed. It has been established that to annihilate one hole (radiation-induced positive charge), it is necessary to inject (0.5–2) × 104 electrons into the gate dielectric; the magnitude of the electric field has almost no effect on the process of erasing the radiation-induced charge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.