Abstract

Trans-4-acetylaminostilbene (trans-AAS) is a potent carcinogen and quite specifically produces sebaceous gland tumors, predominantly in the Zymbal's gland of rats. It is also acutely toxic to the rat glandular stomach. Recent results have shown that these target tissues are not notably exposed to reactive metabolites after single administration of the compound. Therefore, experiments were designed to test whether multiple exposures cause changes in metabolic activation or repair of DNA-bound metabolites to the effect that target and non-target tissues accumulate macromolecular damage differently. Trans-[3H]AAS was orally administered to female Wistar rats in 12 doses over 6 weeks and binding of metabolites to proteins, RNA and DNA in several tissues as well as the pattern of adducts in liver nucleic acids were measured. In addition, the elimination of macromolecular-bound metabolites was determined at various intervals during the treatment. Metabolism and clearance of bound metabolites remained unaltered. As a consequence, DNA-bound metabolites accumulated in all tissues measured; to the greatest extent in the non-target tissues liver and kidney. Tissue exposure, as estimated by protein-binding, differed by a factor of 10 and decreased in the following order: liver, kidney, lung, Zymbal's gland, glandular stomach, mammary tissue. The results support the notion that neither the extent nor the persistence of DNA-binding correlate with the biological effects of trans-AAS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call