Abstract

Polychlorinated biphenyls (PCBs) are environmental pollutants that have been associated with numerous adverse health effects in human and animals. Hydroxylated PCBs (HPCBs) are the product of the oxidative metabolism of PCBs. The presence of hydroxyl groups in HPCBs makes these compounds more hydrophilic than the parent PCBs. One of the best approaches to break down and remove these contaminants is bioremediation; an environmentally friendly process that uses microorganisms to degrade hazardous chemicals into non-toxic ones. In this study, we investigated the cellular accumulation and toxicity of selected PCBs and HPCBs in Gram-negative bacteria, using Escherichia coli as a model organism. We found that none of the five PCBs tested were toxic to E. coli, presumably due to their limited bioavailability. Nevertheless, different HPCBs tested showed different levels of toxicity. Furthermore, we demonstrated that the primary multidrug efflux system in E. coli, AcrAB-TolC, facilitated the efflux of HPCBs out of the cell. Since AcrAB-TolC is constitutively expressed in E. coli and is conserved in all sequenced Gram-negative bacterial genomes, our results suggest that the efflux activities of multidrug resistant pumps may affect the accumulation and degradation of PCBs in Gram-negative bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.