Abstract

Among vegetable plants, red beet contains a relatively high level of the B vitamin folic acid. Although many leafy green vegetables contain high levels of folic acid, red beet is consumed primarily as a root vegetable. Folic acid levels have been quantified in various vegetable plants, but little information exists regarding the accumulation and distribution of this vitamin in plant tissues. The objective of this study was to characterize free folic acid content (FFAC) in shoot and root tissue during growth of two red beet inbreds. Experiments were conducted in a greenhouse during 1993, 1994 and 1995. Two inbreds, W384 and W357, were planted in randomized complete blocks and shoot and root tissues were separately harvested at 60, 80, and 100 days after planting (DAP). Significant differences between years, tissue portions, and among harvest dates were detected, however, similar patterns in FFAC accumulation and distribution were observed between inbreds and years. FFAC in shoot tissue was significantly greater than root tissue for both inbreds. Accumulation of FFAC was linear for both inbreds across harvest dates for root tissue but not for shoot tissue. FFAC accumulation in shoot tissue increased sharply from 60 to 80 DAP but decreased sharply from 80 to 100 DAP. These results demonstrate that FFAC accumulates differentially in root and shoot tissue in a red beet plant. Maximum folic acid levels in shoot tissue are achieved prior to those in root tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.