Abstract

Vanisulfane is a novel plant antiviral agent with promising prospects to prevent and control viral crop diseases. However, human health risk assessment after vanisulfane exposure from animal-derived food products remains limited. To gain insight into the accumulation and biotransformation of vanisulfane in livestock, laying hens were dietary exposed to 14C-vanisulfane. Although more than 80 % of the applied dose was observed in the excreta, vanisulfane and its metabolites accumulated in tissues, especially the liver and kidney, and was found to be transferred to eggs. A total of eight metabolites associated with both phase I and phase II metabolism were identified via 14C tracing and LC–QTOF–MS. Phase I metabolism included oxidation, hydroxylation, dechlorination and demethylation, and phase II metabolism was associated with sulfonic acid and glucuronide conjugation. The high percentages of metabolites in laying hens’ tissues and organs, illustrated the active biotransformation of vanisulfane in vivo, which suggests that the marker residues of vanisulfane should consider its major metabolites. A digestive model was also used to determine the digestive fate of vanisulfane. This study improves our understanding of vanisulfane accumulation and biotransformation in laying hens, which will be helpful for risk assessments of foods derived from animals exposed to pesticides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call