Abstract

The effect of hydrogen, accumulation and annealing of radiation defects on the physicomechanical properties of an austenitic Kh16N15M3T1 steel (16Cr15Ni3Mo1Ti) has been investigated upon low-temperature (77 K) neutron and electron irradiations. It has been shown that, when its concentration is about 300 at ppm, hydrogen reduces plasticity by 25%. The presence of helium (2.0–2.5 at ppm) introduced by the tritium-trick method exerts an effect on the yield strength and hardly affects embrittlement. Upon both electron and neutron irradiation, there is a linear relation between the increment of the yield strength and the square root of the increment of the residual electrical resistivity (the concentration of radiation defects). The annealing of vacancies occurs in the neighborhood of 300 K (energy for vacancy migration is 1.0–1.0 eV). Vacancy clusters dissociate near 480 K (energy for dissociation is 1.4–1.5 eV).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.