Abstract

We present two-dimensional hydrodynamic simulations of the accretion-induced collapse (AIC) of rotating white dwarfs admixed with an extended component of dark matter (DM) comprising sub-gigaelectronvolt degenerate fermionic DM particles. We find that the DM component follows the collapse of the normal matter (NM) component to become a bound DM core. Thus, we demonstrate how a DM-admixed neutron star could form through DM-admixed AIC (DMAIC) for the first time, with the dynamics of DM taken into account. The gravitational-wave (GW) signature from the DMAIC shows distinctive features. In the diffusive DM limit, the DM admixture indirectly suppresses the post-bounce spectral peak of the NM GWs. In the compact DM limit, the collapse dynamics of the DM in a Milky Way event generate GWs that are strong enough to be detectable by Advanced LIGO as continuous low-frequency (<1000 Hz) signals after the NM core bounce. Our study not only is the first-ever computation of GW from a collapsing DM object but also provides the key features to identify DM in AIC events through future GW detections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call