Abstract

AbstractThis unique study evaluates the cumulative 16‐year lifetime performance of a wetland retention basin designed to treat stormwater runoff. Sediment cores were extracted prior to basin excavation and restoration to evaluate accretion rates and the origin of materials, retention characteristics of fine particulate matter, and overall pollutant removal efficiency. The sediment and organic layers together accreted 3.2 cm of depth per year, and 7.0 kg/m2/yr of inorganic material. Average annual accretion rates in g/m2/yr were as follows: C, 280; N, 17.7; P, 3.74; S, 3.80; Fe, 194; Mn, 2.68; Ca, 30.8; Mg, 30.7; K, 12.2; Na, 2.54; Zn, 0.858; Cu, 0.203; and B, 0.03. The accretion of C, N, P and sediment was comparable to nonwastewater treatment wetlands, overall, and relatively efficient for stormwater treatment wetlands. Comparison of particle size distribution between sediment cores and suspended solids in stormwater runoff indicated the wetland was effective at removing fine particles, with sediment cores containing 25% clay and 56% silt. A majority of the accretion of most metals and P could be attributed to efficient trapping of allochthonous material, while over half the accretion of C and N could be attributed to accumulation of autochthonous organic matter. Stormwater treatment was shown to be effective when physical properties of a retention basin are combined with the biological processes of a wetland, although sediment accretion can be relatively rapid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call