Abstract

Searches for dark matter imprints are one of the most active areas of current research. We focus here on light fields with mass m_{B}, such as axions and axionlike candidates. Using perturbative techniques and full-blown nonlinear numerical relativity methods, we show the following. (i)Dark matter can pile up in the center of stars, leading to configurations and geometries oscillating with a frequency that is a multiple of f=2.5×10^{14}(m_{B}c^{2}/eV) Hz. These configurations are stable throughout most of the parameter space, and arise out of credible mechanisms for dark-matter capture. Stars with bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories. We also show that (ii)collapse of the host star to a black hole is avoided by efficient gravitational cooling mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.