Abstract
Massive black hole binaries (MBHBs) represent an unavoidable outcome of hierarchical galaxy formation, but their dynamical evolution at sub-parsec scales is poorly understood, due to a combination of uncertainties in theoretical models and lack of firm observational evidence. In gas rich environments, it has been shown that a putative extended, steady circumbinary gaseous disc plays an important role in the MBHB evolution, facilitating its coalescence. How gas on galactic scales is transported to the nuclear region to form and maintain such a stable structure is, however, unclear. If, following a galaxy merger, turbulent gas is condenses in cold clumps and filaments that are randomly scattered, gas is naturally transported on parsec scales and interacts with the MBHB in discrete incoherent pockets. The aim of this work is to investigate the gaseous structures arising from this interaction. We employ a suite of smoothed-particle-hydrodynamic simulations to study the formation and evolution of gaseous structures around a MBHB constantly perturbed by the incoherent infall of molecular clouds. We investigate the influence of the infall rate and angular momentum distribution of the clouds on the geometry and stability of the arising structures. We find that the continuous supply of incoherent clouds is a double-edge sword, resulting in the intermittent formation and disruption of circumbinary structures. Anisotropic cloud distributions featuring an excess of co-rotating events generate more prominent co-rotating circumbinary discs. Similar structures are seen when mostly counter-rotating clouds are fed to the binary, even though they are more compact and less stable. In general, our simulations do not show the formation of extended smooth and stable circumbinary discs, typically assumed in analytical and numerical investigations of the the long term evolution of MBHBs. (Abridged)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.