Abstract
QSO emission-line spectra are compared to predictions based on theoretical ionizing continua of accretion disks. Observed line intensities do not show the expected trend of higher ionization with higher accretion disk temperature as derived from the black hole mass and accretion rate. This suggests that, at least for accretion rates close to the Eddington limit, the inner disk does not reach temperatures as high as expected from standard disk theory. Modified radial temperature profiles, taking account of winds or advection in the inner disk, achieve better agreement with observation. This conclusion agrees with an earlier study of QSO continuum colors as a function of disk temperature. The emission lines of radio-detected and radio-undetected sources show different trends as a function of disk temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.