Abstract

Water is a crucial input for any production system, and mining is no exception. A huge amount of water is being used in the various phases of mining activities. In the coming decades, the competition in using a sufficient amount of fresh water will become a major hurdle for the mining industry. Water footprint (WF), an accounting framework for tracking the amount of water used to produce a unit of product, can be useful to the mining companies by quantifying their water resource appropriation and identifying ways to reduce the consumption. In this study, we accounted for the green, blue, and grey water footprint of an open-pit copper mine that is located in Laos. The input–output water flows of the mine are also developed from the inventory of water use. Moreover, we have calculated the uncertainty in the water footprint accounting to check the robustness of the findings. According to the results, the green, blue, and grey WF of the studied mine are 52.04, 988.83, and 69.78 m3/tonne of copper concentrate, respectively. After the installation of a passive effluent treatment system in 2013, the calculated grey WF of the mine was 13.64 m3/tonne, a fivefold decrease than before. The uncertainty in the footprint ranges between 8% to 11% which shows the robustness of the analysis. Although green WF is ignored by most studies, we suggest incorporating it into the accounting. The responsible share of a supply-chain WF to the total blue WF is about 98%, which is quite huge. Water embedded in the hydroelectricity is mainly responsible for such a huge amount of blue WF. Evidently, the use of electricity from hydropower results in the consumption of a large amount of water in exchange for a reduction in carbon emissions. Thus, the article attempts to demonstrate the escalating importance of WF accounting of this mine.

Highlights

  • Mining activities use an extensive amount of water in their various phases of production, with copper mining itself using more than 1.3 billion cubic meter water during 2006 [1,2]

  • Blue WF contributed to about 89% of the total WF of the mine where the supply-chain water footprint dominated the accounting with an estimated value of 1169.87 m3/tonne of concentrate

  • It was evident that the use of hydroelectricity was responsible for the huge supply-chain blue WF

Read more

Summary

Introduction

Mining activities use an extensive amount of water in their various phases of production, with copper mining itself using more than 1.3 billion cubic meter water during 2006 [1,2]. One way of quantifying the anthropogenic pressure on the natural environment is to estimate the environmental footprint where the resource appropriation and the waste generation are measured [7]. WF, a specific environmental footprint, is considered as a comprehensive indicator of the water resource appropriation and the assimilation of waste caused by human activities in the spatiotemporal dimension [7,11]. A WF analysis adds the global dimension in effort to understand the pattern of water use, scarcity, and pollution. It paves the way for analyzing what can be done elsewhere than locally to improve the sustainability of water use on top of the existing practices [12]. Only a handful of studies have considered this fact when performing footprint accounting [13]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.