Abstract
The time-varying reproduction number, Rt, is commonly used to monitor the transmissibility of an infectious disease during an epidemic, but standard methods for estimating Rt seldom account for the impact of overdispersion on transmission. We developed a negative binomial framework to estimate Rt and a time-varying dispersion parameter (kt). We applied the framework to COVID-19 incidence data in Hong Kong in 2020 and 2021. We conducted a simulation study to compare the performance of our model with the conventional Poisson-based approach. Our framework estimated an Rt peaking around 4 (95% credible interval = 3.13, 4.30), similar to that from the Poisson approach but with a better model fit. Our approach further estimated kt <0.5 at the start of both waves, indicating appreciable heterogeneity in transmission. We also found that kt decreased sharply to around 0.4 when a large cluster of infections occurred. Our proposed approach can contribute to the estimation of Rt and monitoring of the time-varying dispersion parameters to quantify the role of superspreading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.