Abstract

The assessment of water withdrawals for irrigation is essential for managing water resources in cultivated tropical catchments. These water withdrawals vary seasonally, driven by wet and dry seasons. A land use map is one of the required inputs of hydrological models used to estimate water withdrawals in a catchment. However, land use maps provide typically static information and do not represent the hydrological seasons and related cropping seasons and practices throughout the year. Therefore, this study assesses the value of seasonal land use maps in the quantification of water withdrawals for a tropical cultivated catchment. We developed land use maps for the main seasons (long rains, dry, and short rains) for the semi-arid Kikuletwa catchment, Tanzania. Three Landsat 8 images from 2016 were used to develop seasonal land use land cover (LULC) maps: March (long rains), August (dry season), and October (short rains). Quantitative and qualitative observation data on cropping systems (reference points and questionnaires/surveys) were collected and used for the supervised classification algorithm. Land use classifications were done using 20 land use and land cover classes for the wet season image and 19 classes for the dry and short rain season images. Water withdrawals for irrigated agriculture were calculated using (1) the static land use map or (2) the three seasonal land use maps. Clear differences in land use can be seen between the dry and the other seasons and between rain-fed and irrigated areas. A difference in water withdrawals was observed when seasonal and static land use maps were used. The highest differences were obtained for irrigated mixed crops, with an estimation of 572 million m3/year when seasonal dynamic maps were used and only 90 million m3/year when a static map was used. This study concludes that detailed seasonal land use maps are essential for quantifying annual irrigation water use of catchment areas with distinct dry and wet seasonal dynamics.

Highlights

  • Spatial and temporal distributed information of land use and cover (LULC) is essential in understanding agro-hydrological processes, such as water use, climate change, food security, and plant diseases [1]

  • Data was provided by the Tanzania Meteorological Agency (TMA) and Pangani Basin Water Office (PBWO)

  • We found that the spatial distribution of classes, such as forest and perennial land cover types, corresponds to the results of past land use land cover (LULC) studies for our study area [15]

Read more

Summary

Introduction

Spatial and temporal distributed information of land use and cover (LULC) is essential in understanding agro-hydrological processes, such as water use, climate change, food security, and plant diseases [1]. Land cover refers to the vegetation and artificial construction covering the land. Water 2019, 11, 2471 surface [2]. It is generally assumed that land cover is unlikely to change within a single year. The land cover change is usually associated with long-term changes due to developments and land use planning in the area. Land use refers to manmade socio-economic activities and management practices on the land [2]. Anthropogenic activities may change during a year depending on the season, especially on cultivated lands. The seasonal change of LULC is referred to as seasonal LULC dynamics

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call