Abstract

Operational flood mitigation and flood modeling activities benefit from a rapid and automated flood mapping procedure. A valuable information source for such a flood mapping procedure can be remote sensing synthetic aperture radar (SAR) data. In order to be reliable, an objective characterization of the uncertainty associated with the flood maps is required.This work focuses on speckle uncertainty associated with the SAR data and introduces the use of a non-parametric bootstrap method to take into account this uncertainty on the resulting flood maps. From several synthetic images, constructed through bootstrapping the original image, flood maps are delineated. The accuracy of these flood maps is also evaluated w.r.t. an independent validation data set, obtaining, in the two test cases analyzed in this paper, F-values (i.e. values of the Jaccard coefficient) comprised between 0.50 and 0.65. This method is further compared to an image segmentation method for speckle analysis, with which similar results are obtained. The uncertainty analysis of the ensemble of bootstrapped synthetic images was found to be representative of image speckle, with the advantage that no segmentation and speckle estimations are required.Furthermore, this work assesses to what extent the bootstrap ensemble size can be reduced while remaining representative of the original ensemble, as operational applications would clearly benefit from such reduced ensemble sizes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.