Abstract
This paper presents the incorporation of a digital elevation model into the spatial prediction of water table elevation in Mazandaran province (Iran) using a range of interpolation techniques. The multivariate methods used are: linear regression (LR), cokriging (COK), kriging with an external drift (KED) and regression kriging (RK). The analysis is performed on 3 years (1987, 1997 and 2007) of water table elevation data from about 260 monitoring wells. Prediction performances of the different algorithms are compared with two univariate techniques, i.e. inverse distance weighting and ordinary kriging (OK), through cross validation and examination of the consistency of the generated maps with the natural phenomena. Significantly smaller prediction errors are obtained for four multivariate algorithms but, in particular, KED and RK outperform LR and COK for 3 years. The results show the potential for using elevation for a more precise mapping of water table elevation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.