Abstract

BackgroundDominance effects may contribute to genetic variation of complex traits in dairy cattle, especially for traits closely related to fitness such as fertility. However, traditional genetic evaluations generally ignore dominance effects and consider additive genetic effects only. Availability of dense single nucleotide polymorphisms (SNPs) panels provides the opportunity to investigate the role of dominance in quantitative variation of complex traits at both the SNP and animal levels. Including dominance effects in the genomic evaluation of animals could also help to increase the accuracy of prediction of future phenotypes. In this study, we estimated additive and dominance variance components for fertility and milk production traits of genotyped Holstein and Jersey cows in Australia. The predictive abilities of a model that accounts for additive effects only (additive), and a model that accounts for both additive and dominance effects (additive + dominance) were compared in a fivefold cross-validation.ResultsEstimates of the proportion of dominance variation relative to phenotypic variation that is captured by SNPs, for production traits, were up to 3.8 and 7.1 % in Holstein and Jersey cows, respectively, whereas, for fertility, they were equal to 1.2 % in Holstein and very close to zero in Jersey cows. We found that including dominance in the model was not consistently advantageous. Based on maximum likelihood ratio tests, the additive + dominance model fitted the data better than the additive model, for milk, fat and protein yields in both breeds. However, regarding the prediction of phenotypes assessed with fivefold cross-validation, including dominance effects in the model improved accuracy only for fat yield in Holstein cows. Regression coefficients of phenotypes on genetic values and mean squared errors of predictions showed that the predictive ability of the additive + dominance model was superior to that of the additive model for some of the traits.ConclusionsIn both breeds, dominance effects were significant (P < 0.01) for all milk production traits but not for fertility. Accuracy of prediction of phenotypes was slightly increased by including dominance effects in the genomic evaluation model. Thus, it can help to better identify highly performing individuals and be useful for culling decisions.

Highlights

  • Dominance effects may contribute to genetic variation of complex traits in dairy cattle, especially for traits closely related to fitness such as fertility

  • The objectives of this study were: (1) to estimate additive and dominance variance components for fertility and milk production traits in Holstein and Jersey cows using covariance matrices between individuals for genomic effects obtained from high-density single nucleotide polymorphisms (SNPs) genotypes; and (2) to investigate whether future phenotypes could be predicted with a higher accuracy by including both additive and dominance effects compared to a model that accounts for additive effects only

  • For all traits and both breeds, the inclusion of dominance effects in the model did not have a large effect on the estimates of additive and residual components, but it reduced the permanent environmental variances, which indicates that the permanent environmental effects appear to capture the main part of the dominance variance when the model does not account for dominance

Read more

Summary

Introduction

Dominance effects may contribute to genetic variation of complex traits in dairy cattle, especially for traits closely related to fitness such as fertility. Estimates of dominance variance for various traits in livestock using pedigree information vary considerably between traits and studies, but, in general, have a small to medium (1–34 %) contribution to the total genetic variance [4]. Another reason why dominance effects are generally ignored in the genetic evaluation of animals is that conventional breeding programs aimed at improving the genetic merit of animals rely only on additive gene actions in terms of breeding values, and the prediction of total genetic values has not been considered

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call