Abstract

BackgroundObservable quantitative variations exist between plasma and serum in routine protein measurements, often not reflected in standard reference intervals. In this study, we describe an indirect approach for estimating a combined reference interval (RI) (i.e., serum and plasma), for commonly ordered protein measurands: total protein, albumin, and globulin. MethodsWe applied an indirect reference interval estimation for protein measurements in serum and plasma using data from July 2018 to February 2024. The data were divided into three Epochs based on a period of plasma separator tube shortage during the COVID-19 pandemic. Bootstrap resampling was used to calculate RIs and corresponding 95% confidence intervals for each month. ResultsOur results demonstrate notable changes in RI limits for total protein, albumin, and globulin between Epochs, reflecting the influence of changing sample matrix. A combined RI was identified for all components and verified using plasma and serum samples from 20 healthy individuals and retrospective analysis of flagging rates on our outpatient population using new and historical RIs. ConclusionThe study demonstrates notable differences in the RIs for total protein, albumin, and globulin when container type changes. In addition, the results demonstrate the effectiveness of big data analytics in deriving RIs and highlights the necessity of continuous RI assessment and adjustment based on the patient population and acceptable specimen types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call