Abstract

The clinical trajectory of survivors of critical illness after hospital discharge can be complex and highly unpredictable. Assessing long-term outcomes after critical illness can be challenging because of possible competing events, such as all-cause death during follow-up (which precludes the occurrence of an event of particular interest). In this perspective, we explore challenges and methodological implications of competing events during the assessment of long-term outcomes in survivors of critical illness. In the absence of competing events, researchers evaluating long-term outcomes commonly use the Kaplan-Meier method and the Cox proportional hazards model to analyze time-to-event (survival) data. However, traditional analytical and modeling techniques can yield biased estimates in the presence of competing events. We present different estimands of interest and the use of different analytical approaches, including changes to the outcome of interest, Fine and Gray regression models, cause-specific Cox proportional hazards models, and generalized methods (such as inverse probability weighting). Finally, we provide code and a simulated dataset to exemplify the application of the different analytical strategies in addition to overall reporting recommendations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call