Abstract

Herein, the chemical bonding of both pristine rhodium (Rhn, 2 ≤ n ≤ 9) and mono-vanadium-doped rhodium (RhmV, 1 ≤ m ≤ 8) clusters was understood by density functional theory. The calculated results provided conclusive evidence that a single vanadium dopant thermodynamically stabilized the rhodium clusters by increasing the interatomic bond orders and henceforth the binding energy. Moreover, an in-depth account of the high bond order of RhmV clusters was presented by analyzing the intracluster bonding orbitals and the orbital composition. In addition, the reaction mechanism and thermodynamic parameters of C-H activation processes on both types of clusters were thoroughly investigated, and the results were compared. This comparison revealed that in addition to thermodynamic stabilization, the vanadium dopant enhanced the reactivity of the cluster toward C-H activation by reducing the activation barrier and endothermicity to a reasonable extent. Thus, the obtained results provide an insight into the structure and bonding of both types of inorganic clusters (Rhn and RhmV) and reveal the potential application of vanadium as a dopant for the enhancement of both stability and catalytic properties of rhodium clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.