Abstract

In the theory for domain decomposition methods, it has previously often been assumed that each subdomain is the union of a small set of coarse shape-regular triangles or tetrahedra. Recent progress is reported, which makes it possible to analyze cases with irregular subdomains such as those produced by mesh partitioners. The goal is to extend the analytic tools so that they work for problems on subdomains that might not even be Lipschitz and to characterize the rates of convergence of domain decomposition methods in terms of a few, easy to understand, geometric parameters of the subregions. For two dimensions, some best possible results have already been obtained for scalar elliptic and compressible and almost incompressible linear elasticity problems; the subdomains should be John or Jones domains and the rates of convergence are determined by parameters that characterize such domains and that of an isoperimetric inequality. Technical issues for three dimensional problems are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.