Abstract
Holographic displays have gained unprecedented attention as next-generation virtual and augmented reality applications with recent achievements in the realization of a high-contrast image through computer-generated holograms (CGHs). However, these holograms show a high energy concentration in a limited angular spectrum, whereas the holograms with uniformly distributed angular spectrum suffer from a severe speckle noise in the reconstructed images. In this study, we claim that these two physical phenomena attributed to the existing CGHs significantly limit the support of accommodation cues, which is known as one of the biggest advantages of holographic displays. To support the statement, we analyze and evaluate various CGH algorithms with contrast gradients - a change of contrast over the change of the focal diopter of the eye - simulated based on the optical configuration of the display system and human visual perception models. We first introduce two approaches to improve monocular accommodation response in holographic viewing experience; optical and computational approaches to provide holographic images with sufficient contrast gradients. We design and conduct user experiments with our prototype of holographic near-eye displays, validating the deficient support of accommodation cues in the existing CGH algorithms and demonstrating the feasibility of the proposed solutions with significant improvements on accommodative gains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.