Abstract

Precipitate growth in a duplex stainless steel and a titanium aluminide alloy has been studied using transmission electron microscopy. Particles with similar crystallography and acicular form arise in both cases, and are bounded by two principal facets. One facet, designated C, is based on a commensurate singular interface structure, and the coherency strains are accommodated by interfacial defects. The other facet, designated I, is based on a singular configuration that is incommensurate in one dimension. The orientation relationship (OR) between the particle and the matrix for the singular C structure is Kurdjumov-Sachs (K-S), whereas that for the I facet is Pitsch. The angular incompatibility between these two types of facets must be accommodated to minimize the displacement field as particles grow. The present observations suggest that this is accomplished through the generation of crystal dislocations at facet junctions and their subsequent climb along the facets. The total density of defects needed to accommodate the angular discrepancy is fixed, but the partitioning of these dislocations between C and I facets is not. The actual partitioning determines the observed OR for a particle, and is determined by the kinetics of climb, which is likely to be different in the two facets. In the stainless steel, the observations are consistent with climb occurring in both the C and I facets, but faster in the I facet, leading to a distribution of observed ORs that is skewed away from Pitsch toward K-S. In the titanium aluminide alloy, no climb into the C facets was found, so a unique OR close to K-S arises.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.