Abstract
The problem of accommodating unknown sensor bias is considered in a direct model reference adaptive control (MRAC) setting for state tracking using state feedback. Sensor faults can occur during operation, and if the biased state measurements are directly used with a standard MRAC control law, neither closed-loop signal boundedness, nor asymptotic tracking can be guaranteed and the resulting tracking errors may be unbounded or unacceptably large. A modified MRAC law is proposed, which combines a bias estimator with control gain adaptation, and it is shown that signal boundedness can be accomplished, although the tracking error may not go to zero. Further, for the case wherein an asymptotically stable sensor bias estimator is available, an MRAC control law is proposed to accomplish asymptotic tracking and signal boundedness. Such a sensor bias estimator can be designed if additional sensor measurements are available, as illustrated for the case wherein bias is present in the rate gyro and airspeed measurements. Numerical example results are presented to illustrate each of the schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.