Abstract


 
 
 Elements of gas turbine degradation, such as compressor fouling, are recoverable through maintenance actions like compressor washing. These actions increase the usable engine life and optimise the performance of the gas turbine. However, these maintenance actions are performed by a separate organization to those undertaking fleet management operations, leading to significant uncertainty in the maintenance state of the asset. The uncertainty surrounding maintenance actions impacts prognostic efficacy. In this paper, we adopt Bayesian on-line change point detection to detect the compressor washing events. Then, the event detection information is used as an input to a prognostic algorithm, advising an update to the estimation of remaining useful life. To illustrate the capability of the approach, we demonstrated our on-line Bayesian change detection algorithms on synthetic and real aircraft engine service data, in order to identify the compressor washing events for a gas turbine and thus provide demonstrably improved prognosis.
 
 

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.