Abstract

Root hair formation and the development of transfer cells in the rhizodermis was investigated in various existing auxin-related mutants of Arabidopsis thaliana and in the tomato mutant diageotropica. Wild-type Arabidopsis plants showed increased formation of root hairs when the seedlings were cultivated in Fe- or P-free medium. These extranumerary hairs were located in normal positions and in positions normally occupied by nonhair cells, e.g., over periclinal walls of underlying cortical cells. Defects in auxin transport or reduced auxin sensitivity inhibited the formation of root hairs in response to Fe deficiency completely but did only partly affect initiation and elongation of hairs in P-deficient roots. Application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid or the auxin analog 2,4-dichlorophenoxyacetic acid did not rescue the phenotype of the auxin-resistant axr2 mutant under control and Fe-deficient conditions, indicating that functional AXR2 product is required for translating the Fe deficiency signal into the formation of extra hairs. The development of extra hairs in axr2 roots under P-replete conditions was not affected by auxin antagonists, suggesting that this process is independent of auxin signaling. In roots of tomato, growth under Fe-deficient conditions induced the formation of transfer cells in the root epidermis. Transfer cell frequency was enhanced by application of 2,4-dichlorophenoxyacetic acid but was not inhibited by the auxin transport inhibitor N-1-naphthylphthalamic acid. In the diageotropica mutant, which displays reduced sensitivity to auxin, transfer cells appeared to develop in both Fe-sufficient and Fe-deficient roots. Similar to the wild type, no reduction in transfer cell frequency was observed after application of the above auxin transport inhibitor. These data suggest that auxin has no primary function in inducing transfer cell development; the formation of transfer cells, however, appears to be affected by the hormonal balance of the plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.