Abstract
1. 1.|In the freshwater fish Chalcalburnus chalcoides, an increase in the body (standard) size caused decreases in the upper LT-50 from 36.6° to 36.0°C and lower LT-50 from 6.3° to 5.3°C 2. 2.|The fish acclimated to constant temperatures between 10°C and 30°C showed reasonable heat acclimation and also reasonable cold acclimation. Thus, an increase in the acclimation temperature from 10°C to 30°C caused increases in the upper LT-50 from 34° to 36.2°C and the lower LT-50 from 1.25 to 6.5°C. 3. 3|The mean survival time — temperature curves of 10°, 20° and 30°C acclimated fish at various constant temperatures showed decreased in the survival tim ewith increasing lethal temperatures. Furthermore, an increase in the acclimation temperature causes a shift in the survival duration-temperature curve to the right, i.e., the fish become more heat resistant. Thus, the mean survival duration of 10°, 20° and 30°C acclimated fish at 35°C were 7.5, 79.6 and 530 minutes, respectively. 4. 4.|The effect of the thermal experience to changing lethal temperatures depends on the first lethal temperature to which the fish were exposed as well as the sequence of temperature changes. In the experiments in which the first lethal temperatures were between 32° and 34°C and the temperature was varied in an ascending order, their thermal resistance was increased and the fish required 114 to 174% of the expected lethal doses to die while in the experiments in which the starting temperature were between 38° and 40°C and the temperature varied in descending order, the fish become more sensitive to the upper lethal temperature and they died after receiving only 62 to 81% of the expected lethal doses. Thus, with a gradual increase in the lethal temperature, the fish show additional acclimation in the zone of resistance which in turn causes an increase in the thermal resistance. This may have ecological significance in nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.