Abstract

In recent years anaerobic digestion (AD) has been investigated as suitable biotechnology to treat wastewater at elevated salinities. However, when starting up AD reactors with inocula that are not adapted to salinity, low concentrations of sodium (Na+) in the influent can already cause disintegration of microbial aggregates and wash-out. This study investigated biomass acclimation to 5 g Na+/L of two different non-adapted inocula in two lab-scale hybrid expanded granular sludge bed (EGSB)-anaerobic filter (AF) reactors fed with synthetic wastewater. After an initial biomass disintegration, new aggregates were formed relatively fast (i.e., after 95 days of operation), indicating microbial community adaptation. The newly formed microbial aggregates accumulated Na+ at the expense of calcium (Ca2+), but this did not hamper biomass retention or process performance. The hybrid reactor configuration, including a pumice stone filter in the upper section, and the low up-flow velocities applied, were key features for retaining the biomass within the system. This reactor configuration can be easily applied and represents a low-cost alternative for acclimating biomass to saline effluents, even in existing digesters. When the acclimated biomass was transferred from EGSB to an up-flow anaerobic sludge blanket (UASB) reactor configuration also fed with saline synthetic wastewater, more dense aggregates in the form of granules were obtained. The performances of the UASB inoculated with the acclimated biomass were comparable to another reactor seeded with saline-adapted granular sludge from a full-scale plant. Regardless of the inoculum origin, a defined core microbiome of Bacteria (Thermovirga, Bacteroidetes vadinHA17, Blvii28 wastewater-sludge group, Mesotoga, and Synergistaceae) and Archaea (Methanosaeta and Methanobacterium) was detected, highlighting the importance of these microbial groups in developing halotolerance and maintaining AD process stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.