Abstract

Water availability and salt excess are limiting factors in Mexican mixed pine-oak forest. In order to characterise the acclimatation of native species to these stresses, leaf water (Ψw) and osmotic potentials (Ψs) of Juniperus flaccida, Pinus pseudostrobus and Quercus canbyi were measured under natural drought and non-drought conditions under two different aspects in the Sierra Madre Oriental. Factorial ANOVA revealed significant differences in Ψw and Ψs between two aspects, species and sampling dates. In general, all species showed high predawn and low midday values that declined progressively with increasing drought and soil–water loss. Seasonal and diurnal fluctuation of Ψw and Ψs were higher for J. flaccida and Q. canbyi than for P. pseudostrobus. Leaf Ψw and Ψs were mainly correlated with soil water content, while Ψs of P. pseudostrobus were hardly correlated with environmental variables. Thus, species have different strategies to withstand drought. P. pseudostrobus was identified as a species with isohydric water status regulation, while J. flaccida and Q. canbyi presented water potential patterns typical for anisohydric species. The type of water status regulation may be a critical factor for plant survival and mortality in the context of climate change. Nevertheless, for precise conclusions about the advantages and disadvantages of each type, further long-term investigations are required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call