Abstract

The quorum-sensing system of Staphylococcus aureus, the accessory gene regulator (Agr) system, is responsible for increased transcription of certain exoprotein genes and decreased transcription of certain cell wall-associated proteins during the postexponential phase of growth. This regulation is important for virulence, as evidenced by a reduction in virulence associated with a loss of the Agr system. The enterotoxin D (sed) determinant is upregulated by the Agr system. To define the Agr-regulated cis element(s) within the sed promoter region, we utilized promoters not regulated by Agr to create hybrid promoters. Hybrid promoters were created by using sed sequences combined with the enterotoxin A (sea) promoter or the S. aureus lac operon promoter sequences. The results obtained indicated that the Agr control element of the sed promoter resides within the -35 promoter element and at the Pribnow box to the +1 site of the promoter. At these positions of the sed promoter, a directly repeated 6-bp sequence was found. This repeat is important for overall promoter activity, and maximal regulation of the promoter activity requires both repeat elements. Furthermore, Agr control of sed promoter activity was found to be dependent upon the presence of a functional Rot protein. Therefore, the postexponential increase in sed transcription results from the Agr-mediated reduction in Rot activity rather than as a direct effect of the Agr system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.