Abstract

We present an infrared predissociation (IRPD) study of microsolvated GlyH+(H2O) n and GlyH+(D2O) n clusters, formed inside of a cryogenic ion trap via condensation of H2O or D2O onto the protonated glycine ions. The resulting IRPD spectra, showing characteristic O-H and O-D stretches, indicate that H/D exchange reactions are quenched when the ion trap is held at 80 K, minimizing the presence of isotopomers. Comparisons of GlyH+(H2O) n and GlyH+(D2O) n spectra clearly highlight and distinguish the vibrational signatures of the water solvent molecules from those of the core GlyH+ ion, allowing for quick assessment of solvation structures. Without the aid of calculations, we can already infer solvation motifs and the presence of multiple conformations. The use of a cryogenic ion trap to cluster solvent molecules around ions of interest and control H/D exchange reactions is broadly applicable and should be extendable to studies of more complex peptidic ions in large solvated clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call