Abstract

Competitive 5-exo and 6-endo anionic intramolecular cyclization reactions in heterocyclic alkynylamides were explored via experimental and computational analysis. The 5-exo-dig cyclization pathway is usually disfavoured in heterocyclic systems, and 6-endo products are often both the kinetic and thermodynamic products. However, we’ve found that it is possible to shift selectivity toward the 5-exo-dig pyrrolone products away from the less strained pyridinone products that are produced via the 6-endo-dig cyclization. Parameters such as identity of heteroatom, heteroatom positioning within the heterocycle, and functionality on the alkyne were investigated and, in many cases, were found to strongly influence product ratios. A series of computational studies was performed to provide further insight into the 5-exo-dig and 6-endo-dig pathways in these heterocyclic systems. Theoretical predictions were found to reproduce experimental results, highlighting the predictive capabilities of the computations in determining preferred products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call