Abstract

It is shown that nanosecond to picosecond fluorescence relaxation phenomena can be accessed for imaging after double pulse saturation excitation. This new technique has been introduced before as fluorescence lifetime imaging (DPFLIm) (Mueller et al, 1995). An OPA laser system generating ultra short, widely tunable, high power optical pulses provides the means for the selective excitation of specific fluorophores at sufficient excitation levels to obtain the necessary (partial) saturation of the optical transition. A key element in the developed method is that the correct determination of fluorescence relaxation times does allow for non-uniform saturation conditions over the observation area. This is true for the validation demonstration experiments reported here as well as for imaging applications at a later stage. Measurements on bulk solutions of Rhodamine B and Rhodamine 6G in different solvents confirm the experimental feasibility of accessing short fluorescence lifetimes with this technique. As only integrated signal detection is required no fast electronics are needed, making the technique suitable for fluorescence lifetime imaging in confocal microscopy, especially when used in combination with bilateral scanning and cooled CCD detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.