Abstract

Supramolecular nanoassemblies that respond to the presence of proteins are of great interest, as aberrations in protein concentrations represent the primary imbalances found in a diseased state. We present here a molecular design, syntheses, and study of facially amphiphilic dendrimers that respond to the presence of the protein, immunoglobulin G. It is of particular interest that the ligand functionality, utilized for causing the binding-induced disassembly, be lipophilic. Demonstration of binding with lipophilic ligands greatly expands the repertoire of binding-induced disassembly, since this covers a rather large class of ligand moieties designed for proteins and these provide specific insights into the mechanistic pathways that are available for the binding-induced disassembly process. Here, we describe the details of the binding induced disassembly, including the change in size of the assembly in response to proteins, concurrent release of noncovalently encapsulated guest molecules, and the specificity of the disassembly process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.