Abstract

Quantitative evaluation of the response of crop yield and crop water productivity (CWP) to future climate change is important to prevent or mitigate the adverse effects of climate change. This study made such an evaluation for the agricultural land over the Heihe River basin in northwest China. The ability of 31 climate models for simulating the precipitation, maximum temperature, and minimum temperature was evaluated for the studied area, and a multi-model ensemble was employed. Using the previously well-established Soil and Water Assessment Tool (SWAT), crop yield and crop water productivity of four major crops (corn, wheat, barley, and spring canola-Polish) in the Heihe River basin were simulated for three future time periods (2025–2049, 2050–2074, and 2075–2099) under two Representative Concentration Pathways (RCP4.5 and RCP8.5). The results revealed that the impacts of future climate change on crop yield and CWP of wheat, barley, and canola would all be negative, whereas the impact on corn in the eastern part of the middle reaches of the Heihe River basin would be positive. On the whole, climate change under RCP8.5 scenario would be more harmful to crops, while the corn crops in the Minle and Shandan counties have better ability to cope with climate change.

Highlights

  • The latest report of the Intergovernmental Panel on Climate Change (IPCC) points out that the concentration of greenhouse gases in the atmosphere will continue to rise in the future under the combined effects of natural factors and human activity and that the continuous warming of the global climate system has been an indisputable fact (IPCC 2013)

  • Climate model evaluation Based on the historical observation data and model simulation data over the period 1980–2004 at the meteorological stations, the correlation coefficient and centered root-meansquared difference (cRMS) were calculated, and the climate models were sorted according to the order of the correlation coefficient from high to low and the cRMS from low to high

  • Precipitation and temperature As predicted by the multi-model ensemble, the average annual rainfall during the short-term period increased by 22.29 mm and 16.75 mm for RCP4.5 and RCP8.5, respectively, compared with that during the baseline period

Read more

Summary

Introduction

The latest report of the Intergovernmental Panel on Climate Change (IPCC) points out that the concentration of greenhouse gases in the atmosphere will continue to rise in the future under the combined effects of natural factors and human activity and that the continuous warming of the global climate system has been an indisputable fact (IPCC 2013). Quality, and combination of climate variables, as well as the more frequent occurrence of extreme weather and natural disasters with. According to the recent FAO (Food and Agriculture Organization of the United Nations) report, climate change for high-emission climate scenarios by 2100 may result in production reduction with a rate of 20–45% for maize, 5–50% for wheat, 20–30% for rice, and 30–60% for soybean (FAO 2016). The degree of impact will vary with different crop types, but all are anticipated

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.