Abstract

G protein-coupled receptors (GPCRs) serve critical physiological roles as the most abundant family of receptors. Here, we describe the design of a generalizable and cell lysate-based method that leverages the interaction between an agonist-activated GPCR and a conformation-specific binder to reconstitute split nanoluciferase (NanoLuc) in vitro. This tool, In vitro GPCR split NanoLuc ligand Triggered Reporter (IGNiTR), has broad applications. We have demonstrated IGNiTR's use with three Gs-coupled GPCRs, two Gi-coupled GPCRs and three classes of conformation-specific binders: nanobodies, miniG proteins, and G protein peptidomimetics. As an in vitro method, IGNiTR enables the use of synthetic G protein peptidomimetics and provides easily scalable and portable reagents for characterizing GPCRs and ligands. We tested three diverse applications of IGNiTR: (1) proof-of-concept GPCR ligand screening using dopamine receptor D1 IGNiTR; (2) detection of opioids for point-of-care testing; and (3) characterizing GPCR functionality during Nanodisc-based reconstitution processes. Due to IGNiTR's unique advantages and the convenience of its cell lysate-based format, this tool will find extensive applications in GPCR ligand detection, screening, and GPCR characterization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call