Abstract

Environmental monitoring of workplaces where antineoplastic drugs are handled constitutes an essential tool to assess occupational exposures among health-care workers. Consequently, availability of simple, sensitive, and affordable analytical methodologies is needed, particularly in health-care settings with limited resources that restrict environmental monitoring studies. Previously validated methodologies for simultaneous determination of ifosfamide, cyclophosphamide, and paclitaxel were modified and re-validated in order to create a more sensitive and more accessible liquid chromatography-based analytical method for measuring levels of workplace contamination generated by the handling of antineoplastic drugs in oncology healthcare settings with limited resources. An HPLC-UV methodology was developed and validated to simultaneously determine ifosfamide, cyclophosphamide, and paclitaxel in field wipe samples collected from oncology health-care settings with limited resources. Solid-phase extraction was incorporated to concentrate analytes and improve their detection and quantification. Adequate limits of detection for ifosfamide (0.02 ng/cm2), cyclophosphamide (0.1 ng/cm2), and paclitaxel (0.03 ng/cm2) were obtained. Also, mean recoveries between 88.7 and 96.2 % were achieved. The analytical method described here using a more widely available instrumentation provides an excellent alternative to LC-MS when establishing workplace contamination levels produced by the handling of antineoplastic drugs in non-high-income country oncology health-care settings.

Highlights

  • Environmental monitoring of workplaces where antineoplastic drugs are handled constitutes an essential tool to assess occupational exposures among health-care workers

  • Specific modifications to the original analytical methodology consisted of (1) replacing a C8 column by a C18 column as the stationary phase because of its more wide availability in analytical laboratories, along with its versatility when separating and analyzing compounds with different physicochemical properties as it is in this case; (2) incorporating an internal standard; (3) slightly varying the gradient elution of the mobile phase in order to decrease the time of analysis; and (4) including a concentration step of wipe samples based on solid-phase extraction to increase the sensitivity of the method, as well as ease of wipe sample storage and transportation

  • The proposed method was able to reduce the total time of analysis to 25 min for separating and measuring all three drugs contained in environmental wipe samples, increasing the throughput when compared to the original chromatographic method (65 min), this is due to the use of the C18 column instead of the C8 stationary phase, along with the slight variation of the gradient elution of the mobile phase

Read more

Summary

Introduction

Environmental monitoring of workplaces where antineoplastic drugs are handled constitutes an essential tool to assess occupational exposures among health-care workers. Health-care workers are increasingly exposed to these hazardous drugs (HDs) due to work duties This phenomenon has been studied in North American and European developed countries as well as in Australia for several decades to date (Kopp et al 2013; Hedmer and Wholfart 2012). Occupational safety and health organizations have published safety guidelines for the handling of ANDs as a measure to reduce unnecessary occupational exposures (OSHA 1986; OSHA Directorate of Technical Support 1995, 1999; NIOSH Alert 2004). Nowadays, implementation of these safety guidelines is a common feature among oncology health-care settings around the globe; adherence to them is not always a condition that can be assessed by simple

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call