Abstract

Graphene derivatives are an emerging and important class of promising materials because they can bear a wide variety of functional groups, rendering them suitable for a plethora of applications, ranging from energy storage to sensorics. Further functionalisation of these materials requires a thorough understanding of their reactivity at the molecular level because the organic functional groups are close to an effectively infinite surface, which may affect their reactivity. Nitrile groups grafted on a graphene can be easily hydrolysed to carboxyl groups, but they are resistant to reduction by LiAlH4. Here, we combine theoretical and experimental methods to explain the resistance of CN groups grafted on the graphene surface in terms of the limited accessibility of these groups for the reduction agent. We highlight that such mechanistic aspects, i.e., steric hindrance of the reaction centres and surface-solvent interactions, play a crucial role in the reactivity of 2D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.