Abstract

Bacterial small noncoding RNAs have attracted much interest in recent years as posttranscriptional regulators of genes involved in diverse pathways. Small RNAs (sRNAs) are 50 to 400 nucleotides long and exert their regulatory function by directly base pairing with mRNA targets to alter their stability and/or affect their translation. This base pairing is achieved through a region of about 10 to 25 nucleotides, which may be located at various positions along different sRNAs. By compiling a data set of experimentally determined target-binding regions of sRNAs and systematically analyzing their properties, we reveal that they are both more evolutionarily conserved and more accessible than random regions. We demonstrate the use of these properties for computational identification of sRNA target-binding regions with high specificity and sensitivity. Our results show that these predicted regions are likely to base pair with known targets of an sRNA, suggesting that pointing out these regions in a specific sRNA can help in searching for its targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.