Abstract

Loss of spiral ganglion neurons (SGN) is permanent and responsible for a substantial number of patients suffering from hearing impairment. It can derive from the degeneration of SGNs due to the death of sensory hair cells as well as from auditory neuropathy. Utilizing stem cells to recover lost SGNs increasingly emerges as a possible therapeutic option, but access to human SGNs is difficult due to their protected location within the bony impacted cochlea. Aim of this study was to establish a reliable and practicable approach to access SGNs in the human temporal bone for possible stem cell and gene therapies. In seven human temporal bone specimen a transcanal approach was used to carefully drill a cochleostomy in the lateral second turn followed by insertion of a tungsten needle into the apical modiolus to indicate the spot for intramodiolar injections. Subsequent cone beam computed tomography (CBCT) served as evaluation for positioning of the marker and cochleostomy size. The apical modiolus could be exposed in all cases by a cochleostomy (1.6 mm2, standard deviation ±0.23 mm2) in the lateral second turn. 3D reconstructions and analysis of CBCT revealed reliable positioning of the marker in the apical modiolus, deviating on average 0.9 mm (standard deviation ±0.49 mm) from the targeted center of the second cochlear turn. We established a reliable, minimally invasive, transcanal surgical approach to the apical cochlear modiolus in the human temporal bone in foresight to stem cell-based and gene therapy of the auditory nerve.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.