Abstract

Preparation of polyethylenes containing hydroxy groups has been already industrialized through radical copolymerization under harsh conditions followed by alcoholysis. By contrast, hydroxy-functionalized polypropylene has proven a rather challenging goal in polymer science. Propylene can't be polymerized through a radical mechanism, and its coordination copolymerization with polar monomers is frustrated by catalyst poisoning. Herein, we report a new strategy to reach this target. The coordination polymerization of allenes by rare-earth-metal precursors affords pure 1,2-regulated polyallenes, which are facilely transformed into poly(allyl alcohol) analogues by subsequent hydroboration/oxidation. Strikingly, the copolymerization of allenes and propylene gives unprecedented hydroxy-functionalized polypropylene after post-polymerization modification. Mechanistic elucidation by DFT simulation suggests kinetic rather than thermodynamic control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.