Abstract

Multi-modal imaging-guided synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) show great benefits in cancer treatment. The phototheranostics with near-infrared (NIR) absorption, high reactive oxygen species (ROS) generation and photothermal conversion efficiency is highly desirable. Here, we designed and synthesized an “acceptor-donor-acceptor” (A-D-A) structured molecule named IDCIC, with strong absorbance in the NIR region. We further prepared IDCIC into water-soluble nanoparticles (NPs) by wrapping with 1,2-distearoylsn-glycero-3-phosphoethanolamine-N-[(polyethylene glycol)-2000]-amine (DSPE-PEG2000-NH2). The obtained IDCIC NPs show an NIR absorption peak at 760 nm and an NIR-II fluorescence spectrum peak at ∼1000 nm with a fluorescent quantum yield of 1.2%, enabling them excellent photoacoustic and NIR-II fluorescent imaging capabilities. Moreover, IDCIC NPs could simultaneously generate singlet oxygen (with a quantum yield of 9.1%), hydroxyl radicals (·OH) and heat (with a photothermal conversion efficiency of 78.9%) under 808-nm laser irradiation. Based on the above-mentioned properties, IDCIC NPs were used for dual-modal imagingguided synergistic photodynamic/photothermal therapy of cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call