Abstract

Conductive polymers facilitate the electrical current flow through the transfer of electrons and holes. They show promise for novel photo-functional materials in photovoltaics. However, substantial electrostatic interactions between electron donors and acceptors induce polymer aggregation, limiting moldability and conductivity. In this study, robust donor polymers with high heat resistance were synthesized by bonding triphenylamine (TPA) derivatives and formaldehyde to phenolic groups. Resulting TPA-based phenolic polymers exhibited flexible structures and fluorescence due to charge transfer with acceptor molecules. Furthermore, TPA-based phenolic polymers' capacity to distinguish acceptor molecule sizes correlated with their molecular weight, reflecting upon donor-acceptor interactions. This novel optical trait in phenolic polymers holds potential for electronic components and conductive materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.