Abstract

Numerous health insurers offer bonus programmes that score customers’ health behaviour, and car insurers offer telematics tariffs that score driving behaviour. In many countries, however, only a minority of customers participate in these programmes. In a population-representative survey of private households in Germany (N = 2,215), we study the acceptance of the criteria (features) on which the scoring programmes are based: the features for driver scoring (speed, texting while driving, time of driving, area of driving, accelerating and braking behaviour, respectively) and for health scoring (walking distance per day, sleeping hours per night, alcohol consumption, weight, participation in recommended cancer screenings, smoking status). In a second step, we model participants’ acceptance of both programmes with regard to the underlying feature acceptance. We find that insurers in Germany rarely use the features which the participants consider to be the most relevant and justifiable, that is, smoking status for health scoring and smartphone use for driver scoring. Heuristic models (fast-and-frugal trees) show that programme acceptance depends on the acceptance of a few features. These models can help to understand customers’ preferences and to design scoring programmes that are based on scientific evidence regarding behaviours and factors associated with good health and safe driving and are thus more likely to be accepted.

Highlights

  • Healthcare prevention programmes that focus on the promotion of a healthy lifestyle and of physical activity can reduce cardiovascular events and all-cause mortality [1]

  • More than one third of the representative sample considered participating in driver scoring (36.0%) and health scoring (33.8%)

  • Neither gender nor education affected the consideration of participating in health scoring (S3 Table; undirected analyses of any personal survey variable to influence scoring acceptance are published in a report of the company Infas for the Ministry of Justice and Consumer Protection [45])

Read more

Summary

Introduction

Healthcare prevention programmes that focus on the promotion of a healthy lifestyle and of physical activity can reduce cardiovascular events and all-cause mortality [1]. Other insurers use big data analytics to score drivers’ and other customers’ behaviours [3].

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.