Abstract

Arsenic contamination of drinking water is a serious public health threat. In Bangladesh, eight major safe water options provide an alternative to contaminated shallow tubewells: piped water supply, deep tubewells, pond sand filters, community arsenic-removal, household arsenic removal, dug wells, well-sharing, and rainwater harvesting. However, it is uncertain how well these options are accepted and used by the at-risk population. Based on the RANAS model (risk, attitudes, norms, ability, and self-regulation) this study aimed to identify the acceptance and use of available safe water options. Cross-sectional face-to-face interviews were used to survey 1,268 households in Bangladesh in November 2009 (n = 872), and December 2010 (n = 396). The questionnaire assessed water consumption, acceptance factors from the RANAS model, and socioeconomic factors. Although all respondents had access to at least one arsenic-safe drinking water option, only 62.1% of participants were currently using these alternatives. The most regularly used options were household arsenic removal filters (92.9%) and piped water supply (85.6%). However, the former result may be positively biased due to high refusal rates of household filter owners. The least used option was household rainwater harvesting (36.6%). Those who reported not using an arsenic-safe source differed in terms of numerous acceptance factors from those who reported using arsenic-safe sources: non-users were characterized by greater vulnerability; showed less preference for the taste and temperature of alternative sources; found collecting safe water quite time-consuming; had lower levels of social norms, self-efficacy, and coping planning; and demonstrated lower levels of commitment to collecting safe water. Acceptance was particularly high for piped water supplies and deep tubewells, whereas dug wells and well-sharing were the least accepted sources. Intervention strategies were derived from the results in order to increase the acceptance and use of each arsenic-safe water option.

Highlights

  • Arsenic contamination of drinking water resources is increasingly recognized as a global health problem

  • Participants were at risk of drinking arsenic-contaminated water and had access to one of the following arsenic-safe water options: dug wells, pond sand filters, deep tubewells, piped water supply, household arsenic removal, community arsenic removal, household rainwater harvesting systems, or well-sharing

  • Deep tubewells, pond sand filters, and dug wells were used by approximately half the people who had access to these options

Read more

Summary

Introduction

Arsenic contamination of drinking water resources is increasingly recognized as a global health problem. Arsenic exposure has been estimated to account for 21% of all mortality in one moderately contaminated sub-district of Bangladesh [3] and for at least 24,000 deaths per year nation-wide [4]. The arsenic problem was first recognized in the 1990s, when a national survey showed that approximately 27% of shallow tubewells exceeded Bangladesh’s permissible arsenic limit of 50 mg/L, while 46% exceeded the WHO’s provisional guideline value of 10 mg/L [5]. For the most part, supply water from deep, arsenic-free aquifers; in rural and peri-urban areas, shallow, privately-owned tubewells are the principal sources of drinking water. Basic information was imparted to villagers during a massive tubewell screening campaign from 2000 to 2006 in which nearly 5 million wells in arsenic-prone areas were tested and painted red or green, depending on whether they were over or within the national standards [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call