Abstract

The acceptability of eight diets made by a wide variety of microparticulate manufacturing processes was studied using first-feeding walleye Stizostedion vitreum larvae. Diets were formulated using a common dietary mix but differed in manufacture technique. The microparticulate diets fed were (1) carrageenan bound, (2) alginate bound, (3) starch/konjack bound, (4) microextruded/maurmurized (MEM), (5) zein bound, (6) carboxymethyl cellulose bound (CMC), (7) particle-assisted rotationally agglomerated (PARA) and (8) a commercial microparticulate diet (Fry Feed Kyowa B-700, FFK). Controls were groups fed live Artemia nauplii and unfed. Gut fullness was measured as the cross-sectional optical area of the bolus visible through the transparent body of the larvae using computer-aided image analysis. Feeding incidence on MEM particles (71 ± 8%, mean ± standard error), zein-bound particles (69 ± 7%), alginate-bound particles (68 ± 2%) and PARA particles (65 ± 6%) were not significantly different (P 0.05) from the feeding incidence for Artemia (71 ± 6%). FFK (49 ± 14%) and particles bound with carboxymethyl cellulose (27 ± 0.07%), starch (21 ± 10%) or carrageenan (20 ± 0.8%) had significantly (P < 0.05) lower feeding incidence. Larvae that did initiate feeding did not differ significantly (P > 0.05) in the amount of each microparticulate diet or Artemia consumed. This data indicates that once first-feeding walleye start on a diet, they will consume that diet to a similar fixed level of satiation. Given the differences in the amounts of water and nutrients in the various diets, more nutrients were delivered to the gut of walleye larvae feeding on microparticulate diets than on the Artemia control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.