Abstract

BackgroundGlobally, arid regions are expanding and becoming hotter and drier with climate change. For medium and large bodied endotherms in the arid zone, the necessity to dissipate heat drives a range of adaptations, from behaviour to anatomy and physiology. Understanding how apex predators negotiate these landscapes and how they balance their energy is important as it may have broad impacts on ecosystem function.MethodsWe used tri-axial accelerometry (ACC) and GPS data collected from free-ranging dingoes in central Australia to investigate their activity-specific energetics, and activity patterns through time and space. We classified dingo activity into stationary, walking, and running behaviours, and estimated daily energy expenditure via activity-specific time-energy budgets developed using energy expenditure data derived from the literature. We tested whether dingoes behaviourally thermoregulate by modelling ODBA as a function of ambient temperature during the day and night. We used traditional distance measurements (GPS) as well as fine-scale activity (ODBA) data to assess their daily movement patterns.ResultsWe retrieved ACC and GPS data from seven dingoes. Their mass-specific daily energy expenditure was significantly lower in summer (288 kJ kg− 1 day− 1) than winter (495 kJ kg− 1 day− 1; p = 0.03). Overall, dingoes were much less active during summer where 91% of their day was spent stationary in contrast to just 46% during winter. There was a sharp decrease in ODBA with increasing ambient temperature during the day (R2 = 0.59), whereas ODBA increased with increasing Ta at night (R2 = 0.39). Distance and ODBA were positively correlated (R = 0.65) and produced similar crepuscular patterns of activity.ConclusionOur results indicate that ambient temperature may drive the behaviour of dingoes. Seasonal differences of daily energy expenditure in free-ranging eutherian mammals have been found in several species, though this was the first time it has been observed in a wild canid. We conclude that the negative relationship between dingo activity (ODBA) and ambient temperature during the day implies that high heat gain from solar radiation may be a factor limiting diurnal dingo activity in an arid environment.

Highlights

  • Movement is the primary contributor to active energy expenditure in most vertebrates [1,2,3]

  • Dingoes were much more likely to remain stationary than any other behaviour, regardless of where they were in the landscape

  • Understanding the flexibility of behavioural thermoregulation in the arid zone informs our understanding of how populations or species will respond to a changing climate

Read more

Summary

Introduction

Movement is the primary contributor to active energy expenditure in most vertebrates [1,2,3]. Animals move to improve their individual fitness through, for example, access to food resources, to avoid predators, or to find mates. Underlying these behaviours is the need to balance energy acquisition and expenditure, which determines an animal’s behaviour and location in the landscape [4,5,6]. The presence of medium and large carnivores in a landscape can strongly influence the structure and function of ecosystems [12,13,14]. Understanding how apex predators negotiate these landscapes and how they balance their energy is important as it may have broad impacts on ecosystem function

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.