Abstract
AbstractWe analyze homothermal acceleration waves in complex materials (those with active microstructure) in the presence of internal constraints that link the temperature to a manifold-valued phase-field describing a generic material microstructure at a certain spatial scale. Such a constraint leads to hyperbolic heat conduction even in the absence of macroscopic strain; we show how it influences the way acceleration waves propagate. The scheme describes a thermoelastic behavior that is compatible with dependence of the free energy on temperature gradient (a dependence otherwise forbidden by the second law of thermodynamics in the traditional non-isothermal description of simple bodies). We eventually provide examples in which the general treatment that we develop applies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.